

BACKGROUND

- Preeclampsia (PE) is life-threatening, acute-onset hypertension and proteinuria at \geq 20 weeks gestation.¹ PE accounts for 40% of fetal mortality.² The only known cure is placenta delivery.
- Currently, more than one-third of all protein-coding genes have no known function or published literature (i.e., the ignorome).^{3,4} Many disease-associated genes may provide important insight when examined within the context of of other diseases/phenotypes.
- An extensive body of scientific literature and data exist for PE. The PheKnowLator Ecosystem⁵ helps users construct large-scale knowledge graphs (KGs) from a wide variety of biomedical data.

Can PheKnowLator be used to identify novel and actionable molecular mechanisms from the PE ignorome?

METHODS

The experimental design is highlighted in Figure 1. Data and scripts are available on GitHub: https://github.com/callahantiff/ignorenet.

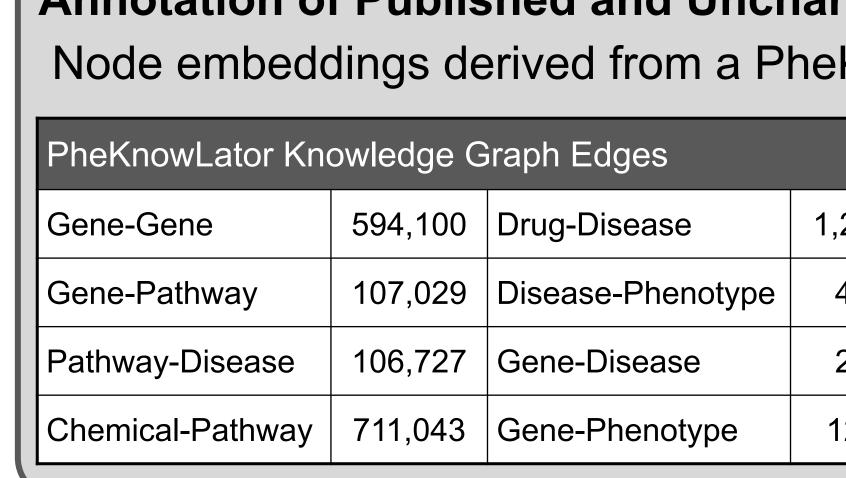
Identification of the PE Molecular Signature

• A meta-analysis of domain expert-selected Gene Expression Omnibus (GEO)⁶ studies.

Identification of Known PE-Associated Genes

• <u>Literature-Driven</u>. Mine PubTator⁷, DisGeNET⁸, and Malacards⁹. • <u>Gene-Driven</u>. Differentially expressed genes (DEGs) queried against PubAnntotation.

The PE ignorome was identified as genes from the PE molecular signature with no known PE-association in the literature.

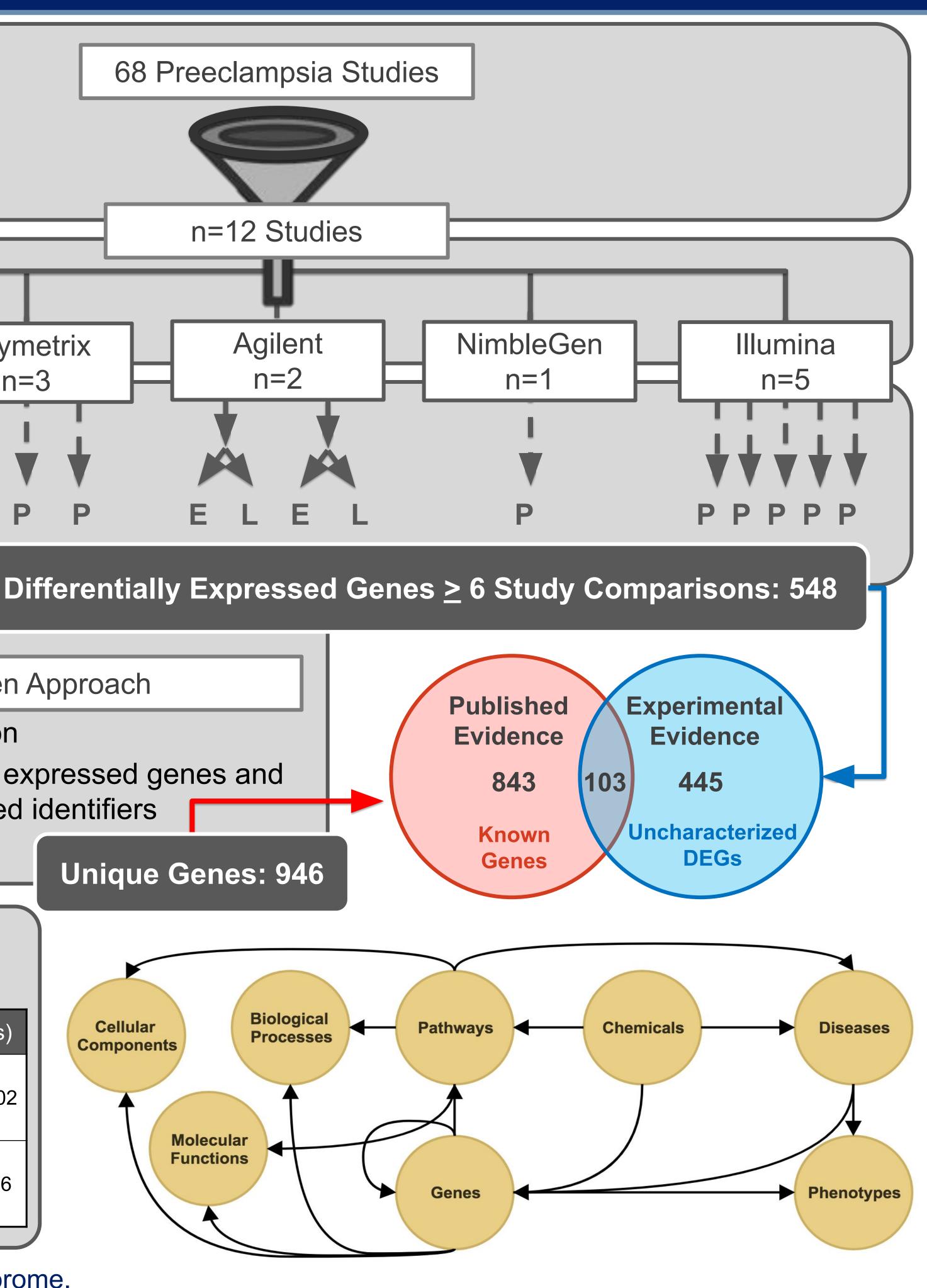

PheKnowLator KG Enrichment

- Generate KG node embeddings using Walking RDF/OWL¹⁰.
- The 100 nearest KG concepts (gold circles, Figure 1) to each ignorome gene were identified, reviewed by domain experts, and compared to gene set enrichment results produced by ToppGene¹¹.

Figure 2. Illustrates the literature coverage of the 445 PE ignorome genes to other diseases. The x-axis represents the number of disease-annotated articles for each gene. The left y-axis shows the number of genes as bars. The right y-axis shows the number of diseases annotated to each PE gene.

Tiffany J. Callahan^{1,2}, Adrianne L. Stefanski¹, George Hripcsak², Lawrence E. Hunter¹ ¹Computational Bioscience Program, University of Colorado AMC; ²Department of Biomedical Informatics, Columbia University **PE GEO Microarray Data Selection Criteria** 68 Preeclampsia Studies 1. Human Gene Expression Data 2. Placenta Biopsy (i.e., Chorionic Villi, Decidua Basalis, Placenta) 3. Multi-Platform Microarray 4. Normalized Data or Differentially Expressed Gene Lists n=12 Studies **Pre-Processing** Normalization and Log2 Transformation •Filter on First Quantile Applied Biosystems Affymetrix Agilent n=2 n=3 n=1 **Differential Expression** •LIMMA on Study Group Comparisons (n=14) - Control vs. Preeclampsia (P) - Control vs. Early Onset (E) - Control vs. Late Onset (L) **Publication Annotations** Gene-Driven Approach Literature-Driven Approach Sources: PubTator, DisGeNET, Malacards **Source:** PubAnnotation Input: "Preeclampsia"; "HELLP Syndrome"; **Input:** All differentially expressed genes and "Severe Preeclampsia"; "Placenta Disease" 18 preeclampsia-related identifiers **Output:** 1,102 articles **Output:** 1,962 articles Unique Genes: 946 **Annotation of Published and Uncharacterized PE Genes** Node embeddings derived from a PheKnowLator⁷ KG **Biological** Cellular PheKnowLator Knowledge Graph Edges (n=128,286 nodes) Processes Components Gene-Biological Process Gene-Gene 594,100 Drug-Disease 1,216,900 265,002 **Gene-Cellular Component** 107,029 Disease-Phenotype Gene-Pathway 43,817 **Gene-Molecular Function** Molecular Pathway-Biological Process Pathway-Disease **Functions** 106,727 Gene-Disease 20,452 Pathway-Cellular Component 17,906 Chemical-Pathway 711,043 Gene-Phenotype 120,288 Pathway-Molecular Function **Figure 1.** Overview of Experimental Approach for Finding the Preeclampsia Ignorome. RESULTS • The PE ignorome contains 445 genes (Venn diagram, Figure 1). • ToppGene Enrichment revealed that 90% of the PE ignorome genes were associated with a disease other than PE (Figure 2), most often neoplasms (48.7%). PheKnowLator-derived enrichment of the 100 KG concepts nearest targets for prevention/intervention. to each PE ignorome gene resulted in 2,227 unique annotations. • Expert reviewed reduced the 2,227 PheKnowLator annotations to 53 deemed worthy of experimental follow-up. None of the identified diseases, biological processes, cellular components, molecular functions, pathways, or phenotype associations overlapped with the ToppGene. • Mechanistic explanations were derived for the 53 expert-selected annotations. An example of a novel disease association and References mechanistic explanation is shown below: 2. Anderson et al. *Placenta* 33 (2012):S42-S47 3. Pandey et al. *PLoS One* 9 (2014):e88889 TARDBP (<u>NCBIGene:23435</u>) - Amyotrophic Lateral Sclerosis (<u>DOID:332</u>) 4. Riba et al. Sci Rep 6 (2016):24647 TARDBP encodes the protein TDP-43 (PMID:28476168). AhR agonists 5. Callahan et al. *Zenodo* (2022):5716383 increase TDP-43 in neurons. Placentas with high AhR expression 6. <u>https://www.ncbi.nlm.nih.gov/geo/</u> during fetal development are highly susceptible to environmental 8. <u>https://www.disgenet.org/</u> toxicants (PMID:20354149). AhR has been proposed as a mechanism 9. <u>https://www.malacards.org/</u> for the protective effects of cigarette smoke on preeclampsia

(<u>PMID:21864991</u>).


Knowledge-Driven Mechanistic Enrichment of the Preeclampsia Ignorome

University of Colorado Anschutz Medical Campus

CONCLUSIONS

• Expert-led multiplatform microarray meta-analysis and literature mining identified the PE ignorome (n=445). The majority of the ignorome genes were associated with a disease other than PE.

 The KG-based enrichment strategy produced 53 highly relevant novel PE associations, thus potentially identifying additional

 The PheKnowLator Ecosystem can aid researchers and bench scientists in relevant and biologically-actionable discovery and provide new opportunities to leverage existing resources.

Limitations: Limited to transcriptionally-regulated molecules and should be considered with respect to the current lack of agreed upon standards for microarray meta-analysis.

1. Chaiworapongsa et al. Nat Rev Nephrol 10 (2014):466-80 7. <u>https://www.ncbi.nlm.nih.gov/research/pubtator/</u>

10. <u>https://github.com/bio-ontology-research-group/walking-rdf-and-owl</u> 11. <u>https://toppgene.cchmc.org/help/publications.jsp</u>