A comprehensive characterization of hyper-morph, hypo-morph, and neo-morph mutations in cancer PHaNToM: Protein-activity based identification of Hyper-, Hypo-, and Neo-morphic effecTors of Mutations

Somnath Tagore¹, Samuel Tsang², Gordon B. Mills², and Andrea Califano¹ ¹Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.2Department of Cell Development and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, USA E-Mail: ¹st3179@cumc.columbia.edu, ²tsangsa@ohsu.edu, ²millsg@ohsu.edu, ¹ac2248@cumc.columbia.edu

INTRODUCTION

BACKGROUND: Although annotation of genomic mutations is a highly relevant and complex segment of the analysis of sequence-based genomic analyses, currently more than ten million variants lack functional annotation. While computational predictions of variant function are usually integrated into gene-based analyses of rare-variants, there is limited information for assessing variant function in the context of a particular disease.

HYPOTHESIS: Use activity of transcription regulators as a gene reporter assay for asessing the effect of upstream mutations.

GOAL: Computational characterization of somatic mutations as neutral, hyper- (gain-offunction), hypo- (loss-of-function) or neo-morphs based on their effect on the activity of their downstream transcriptional regulators, using the VIPER¹.

APPROACH: Our pipeline integrates structural and functional information encompassing six topics: I) structural domains affected by the mutation, 2) the overlap between mutation-specific TF/co-TFs, 3) differential activity signatures and signatures induced by established hyper-morph, hypo-morph and neutral or neo-morph mutations, 4) in vitro data generated by reporter assays, 5) the VIPER¹-inferred activity of each protein relative to a validated control, and 6) the fraction of proteins in a sample that are not affected by established hyper-morphs and hypo-morphs (candidate neo-morphs)².

RESULTS: PHaNToM considers 25 TCGA cohorts and 17 CCLE tissues (cell-lines) for 3830 Proteins, to identify hyper-, neutral, hypo-, and neo-morph mutations. The pipeline also predicts mutations that phenocopy the effect of other mutations.

GOF, E-F) aREA plots, G) Mutation classification plot

Unknown vs. High Confidence Inverted One-Tailed Enrichment (NES) Figure 3: Mutation classification plot for PIK3CA (BRCA) prediction neo-morphs

Here, we present our analysis results on PIK3CA in TCGA Breast Cancer dataset (TCGA-BRCA) by predicting with very high confidence several neo-morphic phenotypes, including the previously-described PIK3CA^{E545}, PIK3CA^{E542}, PIK3CA^{H1047}, PIK3CA^{Q546K} and PIK3CAG1049R. PIK3CA^{E545K}, Interestingly, previously as a gain-of-function classified mutation (in one TCGA-BRCA sample) or a loss-of-function mutation (in two other TCGA-BRCA samples), is predicted to be a neo-morph based on our approach. Further validation of these mutations using PIK3CA reporter assays led to the identification of several significant hypo-morphic signals in TP53 mutant samples. We defined this phenomenon as mutational mimicry (i.e. mutations in proteins mimicking those in established oncogenes) and we propose predicting for tumor as tool sensitivity/resistance Currently, to drugs. experimental validation is ongoing for predicted hyper-, hypo-, and neo-morphs.

Alvarez, M.J., Shen, Y., Giorgi, F.M., Lachmann, A., Ding, B.B., Ye, B.H., and Califano, A. (2016). Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 48, 838-847. ²Ng, P.K., Li, J., Jeong, K.J., Shao, S., Chen, H., Tsang, Y.H., Sengupta, S., Wang, Z., Bhavana, V.H., Tran, R., et al. (2018). Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell 33, 450-462.e410.

COLUMBIA UNIVERSITY Irving Medical Center

Hyper-morphs (GOF)	Neutral	Hypo-morphs (LOF)	Neo-morph Gain	I
N345K	F70F	V105_R108del	C420R	
726K	D350G	K111N	E453K	
C901F	R108H	N345T	E545K	
R349*		E109_I112delinsD	H1047L	
Г1025A		D350N	E542K	
2366R			G118D	
P104L			M1043I	
2539R			P447_L455del	
(111del			H1047R	
A1046A			E545A	
N345H			E469delinsDK	
.764=			M1004I	
R88Q			M1043V	
970K			D939G	
G106_R108del			Y1021C	
D603H			N145N	
G914R			G1049R	
.989V			E1037K	
H1065L			N1044Y	
835			L755L	
/344M			Q546R	
V1040V			D520V	
.156L			L456Afs*13	
R398Н			G1007R	
(111E			S673T	
726G			E542G	
1047Y			E110del	
109_l112del			E600K	
.OF			E103_P104del	
.OF			E103_G106delinsD	
.OF			F614I	
.OF				
.OF				

Table I: List of potential GOF, Neutral, LOF, Neo-morphs in PIK3CA (BRCA)