Do you Trust me? : Development, Implementation and Acceptance of a **Machine Learning Model - Opportunities, Challenges and Future Direction** Murad Megjhani^{1,2}, Hanqing Cao³, Lena Mamykina⁴, Sarah Rossetti⁴, Virginia Lorenzi^{3,4}, Richard Meyers³, Daniel

¹ Department of Neurology, Columbia University Irving Medical Center ² Program for Hospital and Intensive Care Informatics, Department of Neurology, Columbia University Irving Medical Center ³ NewYork-Presbyterian Hospital, New York ⁴ Department of Biomedical Informatics, Columbia University Irving Medical Center, New York

Background

- Among machine learning models that are put into practice, half fail for one in four companies.
- Interest in developing and deploying purpose-built real-time machine learning models across centers
- Challenges in converting a model created from academia to a trustworthy implementation
 - Intrinsic to the mathematical model itself - Model evaluation and generalization
 - Logistics automation and maintenance and integration of model into electronic health record [EHR]
 - Integration into clinician workflow
 - Barriers to adoption privacy, security, risk assessment, identify unintended consequences on clinician workflow.

Clinical Use Case : ContinuOuS Monitoring tool for delayed cerebral IsChemia (COSMIC)

- Delayed cerebral ischemia (DCI) is a stroke syndrome that occurs in up to 30% of patients after ruptured brain aneurysm.
- It lacks a clearly defined time of onset, due to the insidious nature of onset.
- Using physiologic signal inputs and machine learning, we developed and externally validated a temporal classification model that provides a real-time risk score for DCI.
 - Data Acquisition
 - Data Wrangling
 - Feature Engineering
 - Model Building

Run time technical challenges

- File Corruption in big data environment
- Data Quality Data lags
- Software Version Incompatibility Issues
- Targeted Patient Identification

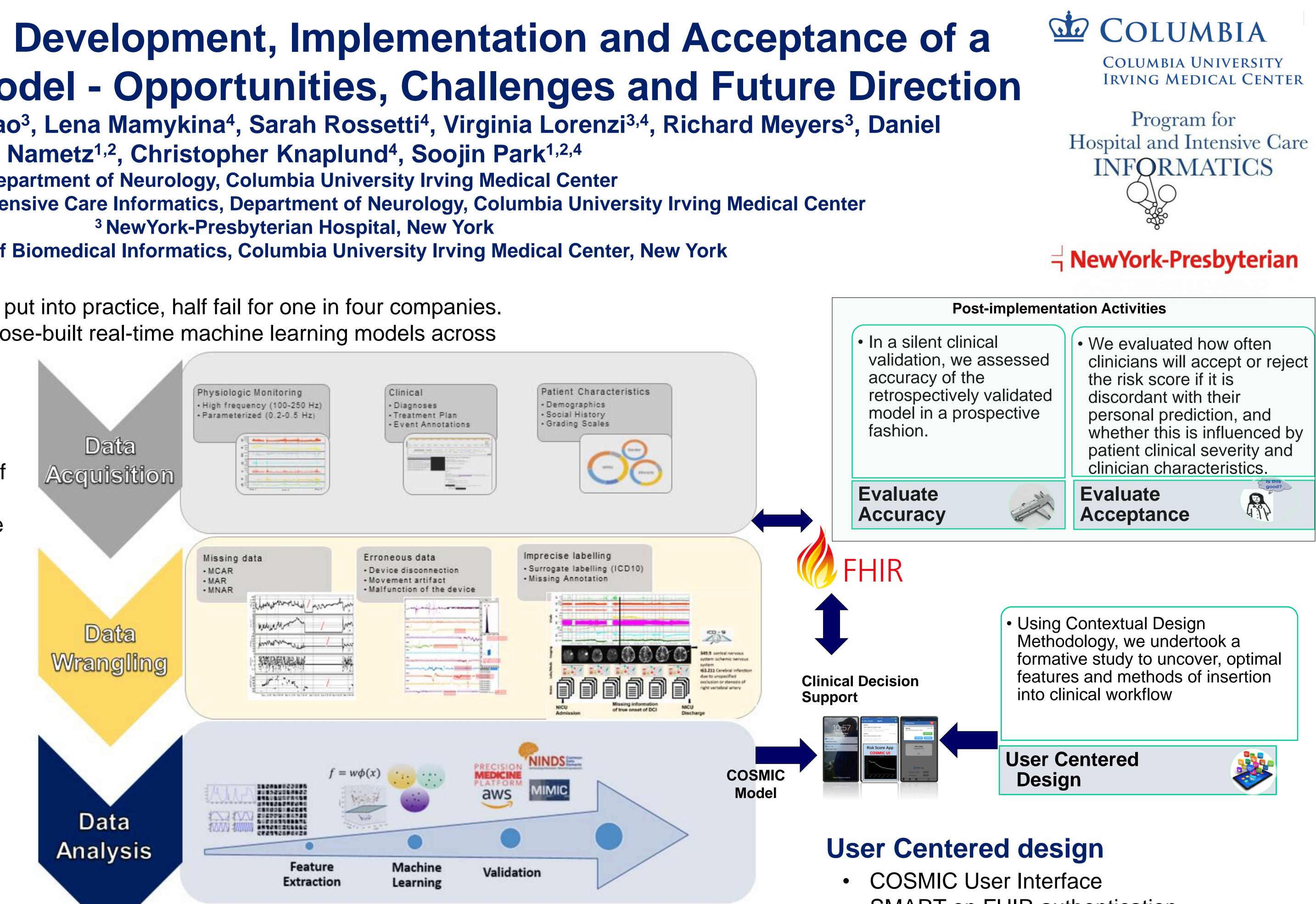

Data Analysis

Figure Illustrating the Algorithm Implementation Pipeline for Applications in Intensive Care (ALPACA): i) Retrospectively develop the Machine learning Model, including: a) acquire physiological data, b) Data Wrangling: deal with missing data and incorrect labelling of the data, c) Data analysis: design the features, build and evaluate machine learning model; ii) Real-time deployment of the Clinical Decision Support Service (CDSS) accepts data from data stores, runs the machine learning model, and provides model output for a user interface; iii) Evaluate accuracy within a silent clinical validation; iv) Evaluate acceptance of the risk score by trained clinicians in a simulation study.. Fast Healthcare Interoperability Resources (FHIR): standard describing data formats and elements and an API for exchanging health information on EHR.

Acknowledgments

This study was funded by National Institute of Health (NIH), grant number: R21NS113055 (SP) and American Heart Association, grant number 20POST35210653 (MM).

Cao H, Megjhani Park S et al. "Machine Learning Model Deployment Using Real-Time Physiological Monitoring: Use Case of Detecting Delayed Cerebral Ischemia. Healthcare Innovations - Point of Care Technologies" Houston, TX2022.

References Megihani M, S. Park *et al.*. "Dynamic Detection of Delayed Cerebral Ischemia: A Study in Three Centers". Stroke. 2021 Feb 18 epub. PMID: <u>33596676</u>.

- SMART on FHIR authentication

Risk Assessment and Model Acceptance

Evaluation in a realistic clinical setting after deploying at bedside

Table 1. Observational Pilot Study Patients (Silent Score)							
Age	Sex	ΗН	MFS	DCI	COSMIC	Precision	EVD
					Score	Recall	
44	F	5	4	Yes	DCI	TP	Yes
50	F	4	3	Yes	DCI	TP	Yes
58	М	1	4	Yes	No DCI	FN	Yes
64	М	1	1	Yes	No DCI	FN	
34	F	2	3	No	No DCI	TN	Yes
61	F	2	4	No	No DCI	TN	Yes
88	F	2	3	No	No DCI	TN	Yes
38	F	2	3	No	No DCI	TN	Yes
68	М	1	1	No	No DCI	TN	
53	М	2	3	No	No DCI	TN	
31	F	2	3	No	No DCI	TN	
HH=Hunt Hess, MFS=modified Fisher Score, TP=true positive, TN=true							
negative, FN=false negative, EVD=external ventricular drain							

