Population analysis of B_0 magnetic field conditions in the human heart

Yun Shang¹, Sebastian Theilenberg¹, Boyu Peng², Sachin R. Jambawalikar², Laura M. Schreiber^{3,4}, Christoph Juchem^{1,2}

¹Department of Biomedical Engineering, Columbia University in the City of New York, New York, United States ²Department of Radiology, Columbia University in the City of New York, New York, United States ³Section of Medical Physics, Department of Radiology, Mainz University Hospital, Mainz, Germany ⁴Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), Würzburg, Germany

Introduction

Cardiovascular magnetic resonance (CMR) suffers from susceptibility-induced artifacts¹⁻⁴ (Figure 1) in the myocardium due to B_0 variations across the heart. The best remedy to mitigate these issues is cardiac B_0 shimming⁵, which requires *in vivo* B_0 maps in the heart typically acquired with breath-hold⁶. However, the lack of population data in cardiac B_0 conditions, especially for the patients with impaired lung capability⁷, in pediatrics⁸, and in elderly⁹ impedes the development of optimal cardiac B_0 shim strategy. Here, we propose to investigate B_0 conditions in the population via B_0 simulation from a large sample of structural CT images.

a)

Methods

 B_0 simulation was performed in B0DETOX¹⁰ based on the CT images of 254 adult subjects under the magnetic field strength of 3 T (Figure 2a). The simulated cardiac B_0 distributions were analyzed by standard deviation and unconstrained spherical harmonic (SH) decomposition up to 2nd and 3rd, which were then compared to vendors' B_0 shim specifications. These B_0 conditions between female and male groups were compared using the student's t-test. Their correlations to the subjects' demographic parameters (Figure 2b) were then calculated.

Structural CT image

Magnetic B_o Magnetic susceptibility field

Figure 2. a) B_0 simulation in the heart (white profile) was based on the magnetic susceptibility distribution derived from structural CT images. This approach was applied to 254 subjects with b) a widespread distribution of demographic parameters.

Figure 1. Susceptibility-induced artifacts in the myocardium caused by B₀ variations in the heart. a) Dark band artifact (white arrow) occurred in the inferolateral wall on the myocardium at 3 T (adopted from Rajiah P et al.². b) Signal loss in the myocardium (white arrows) at 7 T (adopted from Meloni A et al.³.

Results

 B_0 inhomogeneity after unconstrained 2nd and 3rd shim at 3 T was 36 ± 6 Hz and 27 ± 5 Hz, respectively. The shim capability of GE Premier showed limitation at 2nd order, leading to increased B_0 inhomogeneity for some subjects after shim (Figure 3). Female subjects showed significantly lower B_0 inhomogeneity and the Z3 SH coefficient than male subjects. The Z3 term and height have a maximum correlation of 0.343 (Figure 4).

Figure 3. Theoretical B_0 shim analysis of cardiac B_0 conditions at 3 T. SH coefficients decomposed from unconstrained shim analysis a) up to 2^{nd} and b) up to 3^{rd} SH order. C) The same limits of GE Premier have a larger impact on 3^{rd} order SH shim than 2^{nd} order, leading to more subjects having increased B_0 inhomogeneity after shim.

Figure 4. Correlation analysis between B_0 conditions and demographic parameters. Female subjects showed significantly lower a) B_0 inhomogeneity and b) Z3 SH term than male subjects. c) The correlation between the Z3 term and height is 0.343.

Discussion

The detailed analysis of cardiac B_0 conditions suggest the 2nd and 3rd order SH shim requirements in CMR at 3 T. The association between B_0 conditions and demographic parameters is expected to characterize B_0 distributions in the heart and develop optimal subject- and population-specific cardiac B_0 shim strategies.

References

1. Schär M et al., MRM. 2004;51(4) 2. Rajiah P et al., Radiographics. 2014;34(6) 3. Meloni A et al., MRM. 2014;71(6) 4. Hock M et al., MRM. 2021;85(1) 5. Kubach MR et al., Phys. Med. Biol. 2009;54(20) 6. Huelnhagen T et al., MRM. 2017;77(6) 7. Pednekar AS et al., JCMR. 2018;20(1) 8. Pednekar AS et al., JCMR. 2019;1(2) 9. Kalva SP et al., Radiol. Clin. North Am. 2008;46(4) 10. Juchem C, Columbia TechVenture, innovation.columbia.edu/technologies/cu17326_b0detox

