A deep learning pipeline for segmentation of *Proteus mirabilis* colony patterns

Preprint:

Anjali Doshi^{*1}, Marian Shaw^{*1}, Ruxandra Tonea¹, Rosalía Minyety¹, Soonhee Moon¹, Andrew Laine¹, Jia Guo[^], Tal Danino[^], 4,5</sup>

¹Department of Biomedical Engineering, ²Department of Psychiatry, ³Mortimer B. Zuckerman Mind Brain Behavior Institute, ⁴Herbert Irving Comprehensive Cancer Center, ⁵Data Science Institute; All affiliated to Columbia University, New York, NY USA *,^: equal contribution; https://www.ig2400.com

Correspondence: <u>tal.danino@columbia.edu</u>, jg3400@columbia.edu

Background

- Proteus mirabilis, a bacterium commonly found in water and soil, can cause infections of the lungs, wounds, and urinary tract. In the USA, it accounts for ~44% of catheter-associated UTIs.¹
- A critical part of its virulence is Its "swarming motility," a highly coordinated movement propelled by flagella.²

Highlights

- We built a dual-task pipeline for segmenting *P. mirabilis* colonies, including:
 - Creating the first (to our knowledge) large-scale dataset of *P. mirabilis* colony images
 - Image-processing algorithms for semi-automated preprocessing and ground-truth generation
- Patch-based segmentation of the colony from background, including faint outer swarm rings, achieving 93.28% test Dice score

• *P. mirabilis* swarming is typically studied through colony development assays in which the bacterium forms a characteristic macroscopic bullseye pattern.^{3,4}

<u>Problem</u>: There is no computational state-of-the-art method for efficient, comprehensive, and scalable analysis of macroscopic *P. mirabilis* colonies.

- U-Net segmentation of internal ring boundaries, achieving a 83.24% test Dice score, and post-processing for noise reduction
- We conducted a standard assay investigating swarming under different conditions and showed how the pipeline can be used to automate feature extraction and analysis

1. Dataset & Preprocessing

Decoder

2a. Colony Segmentation

For colony segmentation, a CNN was trained to classify overlapping patches of a given image as colony or background. Majority voting fused the overlapping predictions to generate the final binary mask.

2b. Ring Boundary Segmentation

Preprocessed

*In some cases, the models even improved on the ground truth predictions.

Encoder

Input Image

Canny-

derived GT

Ground Truth

Refine for Quality Control

Final Predicted

Mask

Cycle 2

Loss

Manually

VGG-11 U-Net

Refined GT

Cycle 1

First Predicted

Mask

3. Application

We generated images of two standard types of colony patterns (9 each) and applied our segmentation pipeline. The resulting masks enabled calculation of colony area and ring width, easily performed on all images at once.

Model Performance

Label Fusion Method			Accuracy	Precision	Recall	Dice	loU
Single convolutional layer			0.9573	0.9579	0.8708	0.6679	0.9787
Averaging Output			0.9822	0.9518	0.9749	0.9320	0.9904
Majority Voting			0.9841	0.9624	0.9724	0.9328	0.9912
U-Net Encoder	Decoder attention	Training data augmentation					
VGG-11	None	Yes	0.9969	0.7452	0.7998	0.7487	0.6458
	None	No	0.9982	0.8789	0.8117	0.8324	0.7585
	SCSE	No	0.9980	0.8635	0.8059	0.8200	0.7430
VGG-11 + batchnorm	None	No	0.9980	0.8622	0.8055	0.8166	0.7439
	SCSE	No	0.9980	0.8603	0.8102	0.8223	0.7446
ResNet18	None	No	0.9978	0.8432	0.8004	0.7959	0.7253
	SCSE	No	0.9980	0.8629	0.8044	0.8207	0.7394
EfficientNet-B0	None	No	0.9977	0.8337	0.7974	0.7822	0.7132
	SCSE	No	0.9976	0.8436	0.7741	0.7886	0.7004

Acknowledgements

This work was supported by an NSF CAREER Award (1847536), Blavatnik Fund for Innovations in Health (T.D.), and National Science Foundation Graduate Research Fellowship (A.D.).

References

- 1. Yuang et al., *Urol Int* 2021, 105:354-61.
- 2. Schaffer & Pearson, *Microbiol Spectr* 2015, 3.5.10.
- 3. Armbruster et al., J Bacteriol 2013, 195(6):1305-19.
- 4. Rather, *Environ Microbiol* 2005, 7(8):1065-73.