COLUMBIA UNIVERSITY SmokedDuck: Lineage via Selection Vector Capture

Charlie Summers | Haneen Mohammed | Eugene Wu Columbia University

Introduction

DATA FOR GOOD

Database Lineage can be used to improve a wide range of applications:

Query debugging, explanations, interactive visualizations, data cleaning, governance, etc.

Existing lineage capture techniques^{1,2,3} are either too slow, or cannot be used with vectorized databases that are designed for big data, analytic workloads.

What is Lineage?										
The relationship between the input rows and output rows of a query.										
		Students								
SELECT GradYear, AVG(GPA)	Name	GradYear	GPA	1	WHERE GPA > 3.0					
FROM Students WHERE GPA > 3.0 GROUP BY GradYear	Sue	2023	3.2		Name	GradYear	GPA		GROUP BY	GradYear
	Beau	2024	2.7		Sue	2023	3.2		GradYear	GPA
	Jungmin	2023	3.6		Jungmin	2023	3.6		2023	3.53
	Harish	2023	3.8		Harish	2023	3.8		2024	3.4
	Scott	2024	2.4		Eliza	2024	3.4			
	Eliza	2024	3.4							

[1] B. S. Arab, S. Feng, B. Glavic, S. Lee, X. Niu, and Q. Zeng. Gprom - a swiss army knife for your provenance needs. A Quarterly bulletin of the Computer Society of the IEEE Technical Committee on Data Engineering, 41(1), 2018.

[2] F. Psallidas and E. Wu. Smoke: Fine-grained lineage at interactive speed. PVLDB,11:719 - 732, 2018.

[3] P. Senellart, L. Jachiet, S. Maniu, and Y. Ramusat. Provsql: Provenance and probability management in postgresql. Proceedings of the VLDB Endowment(PVLDB), 11(12):2034–2037, 2018.

