
Real-Time Control With the Sparse Synchronous Model

Stephen A. Edwards

The Problem
Rats: A Motivating Example

A colleague trains rats on various tasks
and analyzes their response times.

Such experiments typically use a
microcontroller to generate stimulus and
collect data; solutions usually ad hoc.

It’s difficult for other researchers to
reproduce the results.

He wanted a language to precisely specify
these experiments: what stimulus is
presented to the subjects and their
responses, carefully timed.

A Sample Task (or, How Biologists “Program”)

Challenges

C, the typical language available on microcontrollers, has
no notion of time

Library functions like sleep() tend to be imprecise

Real-Time Operating Systems (RTOSes) are a step in the
right direction, but do not provide precise timing control

Microcontrollers have timers accurate to at least 1 µs, but
they are complicated to use

Our goal: an easy-to-use programming language that
provides precise, reproducible timing control

Our Solution
We developed a runtime system able to provide
precise timing control.
Here are examples it can run, expressed in the
toy language we used for experiments.
A traditional imperative language...

gcd(a, b, &r)
while a != b
if a < b then

b = b − a
else

a = a − b
r = a

Named routines, no return values

Pass-by-value (integer) arguments

Pass-by-reference arguments

Imperative while loops

Conditionals

Imperative assignment

Assignment to a reference returns
a value

...with concurrent function calls...

foo(&a)
a = a + 2

bar(&a)
a = a ∗ 4

main()
var a = 1
fork foo(a) bar(a)
// a = 12 = (1 + 2) * 4 here
fork bar(a) foo(a)
// a = 50 = (12 * 4) + 2 here

Concurrent recursive calls

Concurrently running
routines may interfere

Deterministic: execution
order prescribed by call order

No true parallelism, for now

...and precise timing specification

blink(&led)
while 1
after 50 ms led = 1
wait led
after 50 ms led = 0
wait led

Delayed assignment:
future update scheduled

Blocking wait-for-write

Details
Main Features

Concurrently running tasks (fork) that can block
on variable updates (wait)

Can schedule a future variable update (after)

The program sees and controls “model time,”
like it was running on an infinitely fast processor.

Requested delays independent of processor
speed, controlled by microcontroller timer, not
processor execution speed.
Runtime System

now = 60 ms

toggle(&led)
led = 1 - led

blink(&led, period)
var e = 0
while 1

toggle(led)
after period e = 0
wait e

main(&led)
fork blink(led, 50ms) blink(led, 30ms) blink(led, 20ms)

led=1

main()

blink() blink() blink()

toggle()

PC

PC PC PC

PC

Caller

Caller Caller Caller

Caller

0

000 001 010

000

Ready:

0000 001 010001 010010010001001 010010

Events:

@50
e1←0
@30
e2←0

@50
e1←0

@20
e3←0

@30
e2←0

@50
e1←0

@30
e2←0

@50
e1←0

@30
e2←0

@40
e3←0

@50
e1←0

@40
e3←0

@50
e1←0

@60
e2←0

@50
e1←0

@60
e2←0

@60
e3←0

@60
e2←0

@60
e3←0

@100
e1←0

@60
e3←0

@100
e1←0

@100
e1←0
@90
e2←0

@100
e1←0

@80
e3←0

@90
e2←0

@100
e1←0

led

led led led

led

period=50 period=30 period=20

e1=0 e2=0 e3=0

@50
e1←0

@100
e1←0

@30
e2←0
@60
e2←0

@90
e2←0

@20
e3←0
@40
e3←0
@60
e3←0

@80
e3←0

trigger trigger trigger

Built around two queues:

The Ready Queue holds routines that are yet to be executed at the
current time, prioritized according to their position in the program to
ensure determinism

The Event Queue holds future variable updates, prioritized by time

In an instant, the runtime updates variables with events, then runs all
the routines this has triggered, which may trigger more routines and
schedule future events.

After the runtime is done for an instant, it sets a timer to wait itself up
for the next event.

Environmental inputs may wake it up sooner.

Ongoing Work

We are developing a language and compiler targeting the Sparse
Synchronous Model and its runtime system

We want to port the runtime to a variety of microcontrollers to give
researchers a choice


